\square

Question Paper Code : X 67617

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020
 Fifth Semester
 Computer Science and Engineering
 MA 1301 - DISCRETE MATHEMATICS

(Regulations 2008)
Time : Three Hours
Maximum : 100 Marks

Answer ALL questions
PART - A
(10×2=20 Marks)

1. What is meant by proposition? Give an example.
2. State the rules of inference for statement calculus.
3. Express the statement "Everybody loves somebody" using quantifiers.
4. Let $\mathrm{D}(\mathrm{u}, \mathrm{v}): \mathrm{u}$ is divisible by v . Over the universe $\{5,7,10,11\}$ what are the truth values of $(\exists \mathrm{u}) \mathrm{D}(\mathrm{u}, 5)$ and (y) $\mathrm{D}(\mathrm{y}, 5)$.
5. Is the "divides" relation on the set of positive integers transitive ?
6. State any two properties of Lattices.
7. Define binary and n -ary operations.
8. Show that the function $f: R \rightarrow R$ defined by $f(x)=2 x+7$ is a permutation function.
9. State the relation between semigroup and monoid.
10. What are "Encoder and Decoder"?

X 67617
11. a) i) Show that $(\sim P \wedge(\sim Q \wedge R)) \vee(Q \wedge R) \vee(P \wedge R) \Leftrightarrow R$.
ii) Obtain the principal conjunctive normal form of the formula given by $(\sim p \rightarrow r) \wedge(q \leftrightarrow p)$.
(OR)
b) i) Show that $R \rightarrow S$ can be derived from the premises $P \rightarrow(Q \rightarrow S), \sim R \vee P$ and Q .
ii) Using truth table, prove that $(\mathrm{p} \rightarrow \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \Rightarrow(\mathrm{p} \rightarrow \mathrm{r})$.
12. a) i) Show, by that $(x)(P(x) \vee Q(x)) \Rightarrow(x) P(x) \vee(\exists x) Q(x)$.
ii) Show that the premises "One student in this class knows how to write programs in JAVA" and "Everyone who knows how to write programs in JAVA can get a high-paying job" imply the conclusion "Someone in this class can get a high-paying job".
(OR)
b) i) Using CP or otherwise, obtain the following implication :
(x$)(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{x}))$, (x) $(\mathrm{R}(\mathrm{x}) \rightarrow \square \mathrm{Q}(\mathrm{x})) \Rightarrow(\mathrm{x}) \mathrm{R}(\mathrm{x}) \rightarrow 7 \mathrm{P}(\mathrm{x}))$
ii) Show that $\rceil \mathrm{P}(\mathrm{a}, \mathrm{b})$ follows logically from (x$)(\mathrm{y})(\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{w}(\mathrm{x}, \mathrm{y}))$ and $7 \mathrm{w}(\mathrm{a}, \mathrm{b})$.
13. a) i) Find the partitions of the set $\mathrm{A}=\{1,2,3\}$.
ii) In a distributive lattice L , prove that
$\mathrm{a} \wedge \mathrm{b}=\mathrm{a} \wedge \mathrm{c}$ and $\mathrm{a} \vee \mathrm{b}=\mathrm{a} \vee \mathrm{c} \Rightarrow \mathrm{b}=\mathrm{c}$.
(OR)
b) i) Prove that the relation $R=\{(x, y) / x \equiv y(\bmod 3)\}$ defined on the set of real number is an equivalence relation.
ii) In a Boolean algebra, prove that $(a+b) \cdot\left(a^{\prime}+c\right)=a c+a^{\prime} b$.
14. a) i) Show that the functions f and g which both are from $N \times N$ to N given by $f(x, y)=x+y$ and $g(x, y)=x y$ are onto but not one-to-one.
ii) Using characteristic function, prove that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
b) i) Show that the function $[\mathrm{x} / 2]$ which is equal to the greatest integer which is $\leq \mathrm{x} / 2$ is primitive recursive.
ii) Prove that the product of two even permutation is even.
15. a) i) Define monoid. Give an example. For any commutative monoid (m, *), show that the set of idempotent elements of m forms a submonoid.
ii) State and prove Lagrange's theorem.
(OR)
b) i) Prove that the Kernel of a homomorphism g from a group (G, *) to (H, Δ) is a normal subgroup of G.
ii) Determine the single-error correcting code generated by the parity-check matrix $\mathrm{H}=\left(\begin{array}{cccccc}1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1\end{array}\right)$. If $(0,0,0,0,1,1)$ is the received word, find the transmitted code word.

